翻訳と辞書
Words near each other
・ Connectify Hotspot
・ Connecting Futures
・ Connecting Link
・ Connecting Railway
・ COnnecting REpositories
・ Connecting rod
・ Connecting Rooms
・ Connecting Slough
・ Connecting Spirits
・ Connecting stalk
・ Connecting tubule
・ Connection
・ Connection (affine bundle)
・ Connection (album)
・ Connection (algebraic framework)
Connection (composite bundle)
・ Connection (dance)
・ Connection (Don Ellis album)
・ Connection (Elastica song)
・ Connection (EP)
・ Connection (fibred manifold)
・ Connection (mathematics)
・ Connection (principal bundle)
・ Connection (The Rolling Stones song)
・ Connection (vector bundle)
・ Connection broker
・ Connection Collection, Vol. 1
・ Connection Distributing Co. v. Holder
・ Connection form
・ Connection game


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Connection (composite bundle) : ウィキペディア英語版
Connection (composite bundle)
Composite bundles Y\to \Sigma \to X play a prominent role in gauge theory with symmetry breaking, e.g., gauge gravitation theory, non-autonomous mechanics where X=\mathbb R is the time axis, e.g., mechanics with time-dependent parameters, and so on. There are the important relations between connections on fiber bundles Y\to X, Y\to \Sigma and \Sigma\to X.
==Composite bundle==

In differential geometry by a composite bundle is meant the composition
: \pi: Y\to \Sigma\to X \qquad\qquad (1)
of fiber bundles
: \pi_: Y\to\Sigma, \qquad \pi_: \Sigma\to X.
It is provided with bundle coordinates (x^\lambda,\sigma^m,y^i) , where (x^\lambda,\sigma^m) are bundle coordinates on a fiber bundle \Sigma\to X, i.e., transition functions of coordinates \sigma^m are independent of coordinates y^i.
The following fact provides the above mentioned physical applications of composite bundles. Given the composite bundle (1), let h be a global section
of a fiber bundle \Sigma\to X, if any. Then the pullback bundle
Y^h=h^
*Y over X is a subbundle of a fiber bundle Y\to X.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Connection (composite bundle)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.